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Abstract 

Circular RNAs (circRNAs) are a class of covalently closed, endogenous ncRNAs. Most circRNAs are derived 
from exonic or intronic sequences by precursor RNA back‑splicing. Advanced high‑throughput RNA sequencing 
and experimental technologies have enabled the extensive identification and characterization of circRNAs, such 
as novel types of biogenesis, tissue‑specific and cell‑specific expression patterns, epigenetic regulation, translation 
potential, localization and metabolism. Increasing evidence has revealed that circRNAs participate in diverse cellular 
processes, and their dysregulation is involved in the pathogenesis of various diseases, particularly cancer. In this 
review, we systematically discuss the characterization of circRNAs, databases, challenges for circRNA discovery, 
new insight into strategies used in circRNA studies and biomedical applications. Although recent studies have 
advanced the understanding of circRNAs, advanced knowledge and approaches for circRNA annotation, functional 
characterization and biomedical applications are continuously needed to provide new insights into circRNAs. The 
emergence of circRNA‑based protein translation strategy will be a promising direction in the field of biomedicine.
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Background
CircRNA was originally regarded as incorrect RNA 
cleavage products in viroids [1]. With the development of 
high-throughput sequencing technologies, an increasing 
number of circRNAs have been discovered and have 
received much attention [2, 3]. Unlike other well-known 
classes of linear RNAs, such as messenger RNA (mRNA), 
long noncoding RNA (lncRNA), small nucleolar RNA 
(snoRNA), microRNA (miRNA), etc., circular RNAs are 
covalently closed single-stranded RNAs (ssRNAs) that 

have recently become a widespread class of RNA species 
[3–8]. Although there is still a challenge to identify 
and annotate novel emerging circRNAs, advances 
in bioinformatics algorithms, detection methods, 
and molecular biological techniques have provided 
new opportunities to accelerate the understanding of 
circRNAs.

In recent years, several key characterizations of 
circRNAs have been identified [5, 9]. Although a few 
circRNAs were first identified during intron self-
splicing from ribosomal RNAs, mitochondrial RNAs, 
and tRNAs, most annotated circRNAs are generated 
from pre-mRNA back-splicing [4, 5, 10, 11]. In this 
uncommon pre-mRNA splicing, a downstream 5′ 
splice site is joined to an upstream 3′ splice site to 
form circular RNAs with a 3′,5′-phosphodiester 
bond at the back-splicing junction site (BSJ) [4]. Many 
regulators have been revealed to improve circRNA 
biogenesis, including intronic complementary 
sequences (ICSs) in flanking introns of circle-forming 
exons, Alu elements and RNA-binding proteins (RBPs) 
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[4, 10, 12–14]. Due to the lower efficiency of back-
splicing than that of canonical splicing, the examined 
cells and tissues usually showed a generally low 
abundance of circRNAs. Once produced, the unique 
covalently closed conformation of circRNAs endows 
them with considerable stability and more resistance 
to RNase R than linear RNAs [15], which enables them 
to regulate cellular processes with a small number of 
molecules. Interestingly, there are some insights into 
circRNA clearance, including circRNA degradation 
by RNase H1 in circRNA:DNA hybrids [16, 17], 
endonuclease RNase L during innate immune response 
activation [18], and the RNaseP/MRP complex in m6A 
modification [19]. circRNA levels can also be reduced 
in cancer cells with a rapid proliferation rate [9, 20].

In the past few years, circRNAs have been regarded 
as competing endogenous RNAs that sponge miRNAs 
that silence their target genes [4, 10, 21, 22]. Recent 
studies have revealed that circRNAs perform cellular 
functions via several novel regulatory mechanisms, 
including circRNA-RBP [23], circRNA:DNA hybrids 
[16, 17], m6A modification [19, 24–26], guiding 
A-to-I editing [27, 28], and translation potential [29–
32]. These features illustrated that circRNAs may 
comprehensively play important roles in pathological 
and physiological processes. Increasing evidence 
indicates that circRNAs are closely associated 
with proliferation, metastasis, DNA damage, drug 
resistance and other life activities of cancer cells [20, 
33–35].

Given that circRNAs have structural stability 
advantages and that the negative effect of intron-
derived circRNAs on triggering the immune response 
is smaller than that of other RNAs, the development 
of RNA drugs based on circRNAs has important 
application prospects [5, 9, 36]. circRNAs can be 
relatively stable in biological fluids and may serve as 
good biomarkers for early diagnosis and prognosis 
[36, 37]. Several tissue-specific circRNAs have been 
suggested to be used as targets for cancer treatment, 
even in therapy resistance and targeted drug 
development [38–43]. Of note, RNA circle-based 
translation technologies have emerged as a promising 
strategy in biomedicine [9, 30, 44, 45]. For example, 
the circRNA-RBD-Delta vaccine was designed to resist 
the COVID-19 pandemic [44].

In this review, we collected the recent progress 
in the biogenesis, degradation and biology of 
circRNAs and describe novel technologies for the 
identification, accurate quantification, and functional 
characterization of circRNAs. Based upon our 
findings, we also discuss the current challenges of 
circRNA analysis and new insight into strategies to 

determine circRNA functions and the biomedical 
implications of circRNA.

Characterization of circRNAs
Biogenesis of circRNAs
In general, circular RNA is usually derived from back-
splicing of pre-mRNA to form a closed RNA transcript 
[3, 5, 10, 11]. Additionally, circular RNA can intermedi-
ately originate from small nuclear RNAs (snRNAs), mito-
chondrial RNAs, ribosomal RNAs (rRNAs), and transfer 
RNAs (tRNAs) during intron self-splicing [5, 42, 46–48]. 
Advancing RNA sequencing (RNA-seq) technologies and 
computational pipelines for circular RNA annotation, 
recent studies have found that circRNAs can be derived 
from exons, introns, 5’ untranslated regions (UTRs), 
3’ UTRs or antisense sequences and can be classified 
into four main categories, intronic circRNAs (ciRNAs), 
exon‒intron circRNAs (EIciRNAs), exonic circRNAs 
(ecircRNAs), and others, detected in a variety of organ-
isms, including viruses, archaea, plants, parasites, and 
most mammals [4, 5, 10, 11, 49, 50] (Fig.  1a). Evidence 
has shown that back-splicing of pre-mRNA is the pre-
dominant process for circRNA generation [3, 50]. In this 
back-splicing process of pre-mRNA, a splice donor that 
is downstream of the 5’ splice site is joined to a splice 
acceptor that is upstream of the 3’ splice site, producing 
a circular format with a 3’-5’ phosphodiester bond at the 
back-splicing junction site (BSJ) [3]. In addition, RBPs, 
special sequences of introns, etc., may assist in the pro-
duction of circRNA [3, 12, 15]. Circularized RBPs can 
shorten the distance between the upstream and down-
stream of the circular exon by connecting related intron 
sequences, promote splicing, and induce the formation 
of circular RNA [11, 23, 51]. If the intron has a unique 
inverted repeat sequence (such as Alu) [12, 52], after base 
pairing occurs, the splicing donor is brought close to the 
splicing acceptor, which promotes nucleophilic attack 
and splicing and can also promote the production of cir-
cRNA. However, the biochemical environment and regu-
latory factors required for the occurrence of circRNA 
are not yet clear. It is still worth noting that one gene can 
generate different circRNAs, which can be affected by the 
competition of RNA pairing across the flanking introns 
[3, 11].

Function mechanisms of circRNAs
To date, studies using the application of emerging 
approaches have elucidated various regulatory mecha-
nisms of circRNAs, which highlight many aspects of gene 
expression, DNA damage, RNA editing and immunity. 
We will focus on the representative epigenetic regula-
tion of circRNAs (Fig. 1b–g), including circRNA-miRNA 
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sponges, circRNA:DNA hybrids (circR-loops), guiding 
A-to-I editing, circRNA-protein interactions, and trans-
lation [16, 22, 27–29, 32].

A majority of studies have shown that circRNA can 
act as miRNA sponges in a manner similar to that of 
mRNA [22]. Circular RNA exists in the cytoplasm 
and has multiple miRNA binding sites. It can sponge 
miRNA to inhibit the regulatory function of miRNA. For 
example, miR-7 [53, 54] has been identified as a tumor-
inducing factor or tumor suppressor in the process 
of tumorigenesis. Circular RNA (ciRS-7; also known 
as CDR1as) can specifically sponge miR-7, thereby 
inhibiting the function of miR-7 and upregulating the 
expression of IRS2, EGFR and other related genes [22, 
55] (Fig.  1b). Another well-known epigenetic regulatory 
mechanism of circRNAs is their interaction with RNA-
binding proteins  [23, 56] (Fig. 1c). circRNA interactions 
with RBPs could function as protein antagonists or as 
inhibitors of protein activity [10, 57, 58]. For example, 
circ-Foxo3 interacts with cell cycle-related proteins 
(including p21 and p27), thereby blocking the role of 
these proteins in the cancer cell cycle [57]. CircPABPN1 
binds to HuR, suppresses the interaction of HuR with 
PABPN1 mRNA and reduces its translation [58]. Besides, 
endogenous circRNAs tend to form 16–26  bp duplexes 
and interact with double-stranded RNA (dsRNA)-
activated protein kinase (PKR), which blocks innate 
immunity  [18, 40] (Fig. 1d). CircRNAs have an extensive 
ability to regulate cellular processes, which may explain 
the epigenetic differences between cells in the same 
organism.

In recent years, some emerging epigenetic regulatory 
mechanisms of circRNAs have been illuminated. DNA: 
RNA immunoprecipitation sequencing (DRIP-seq) data 
have also shown that circRNAs frequently form R-loop 
structures and tend to regulate DNA damage and genome 
instability  [16, 59] (Fig.  1e). Some circRNAs can act as 
stable antisense RNAs to bind with RNAs to modulate 
RNA stability, structure, and activity [27, 60, 61] (Fig. 1f ). 
For example, artificial antisense sequences in a circular 
RNA backbone can significantly reduce the proliferation 
of the SARS-CoV-2 virus [60]. Circular guide (g)RNAs 
were engineered to execute A-to-I editing on mRNAs 
by recruiting endogenous ADARs, which may realize the 
aim of treatment without disturbing genes [27].

Translation potential of circRNAs
As mentioned above, circRNAs are a class of noncoding 
RNAs, but recent scientific research has shown that some 
circRNAs also have certain coding capabilities [32]. The 
5’ cap and 3’ poly(A) tail are necessary structures for the 
linear translation of mRNA  [25]. Unlike ordinary mRNA, 
circRNA lacks a similar translational molecular structure, 

but it can utilize the N6-adenosine methylation (m6A) 
modification or internal ribosome entry site (IRES) 
translation to promote the direct binding of the initiation 
factors to the cyclic RNA [25, 32, 62–64] (Fig.  1g). The 
translation of linear mRNA is initiated by the elF4E 
complex [65, 66]. First, elF4F binds to the 5’ cap end of 
the mRNA, and then elF4G serves as a protein binding 
scaffold to assemble the initiation complex [66]. Then, 
the combination of elF3 and elF4G recruits ribosomes to 
the mRNA and initiates translation [66]. For circRNA, a 
special eIF4G protein (eIF4G2) directly recognizes IRES 
and initiates eIF4 complex assembly without eIF4E in a 
5’ cap-independent manner, providing circRNA with 
translation ability [29, 67]. m6A modification can also 
regulate the protein-coding potential of circRNAs [25, 
68, 69]. For example, a high m6A methylation level was 
found in circZNF609, which promotes internal ribosome 
entry site (IRES)-activated protein coding [25, 68]. Yang 
et al. also examined the coding landscape of the human 
transcriptome and found that many circRNAs contain 
 m6A motifs with translational potential and that high 
 m6A levels in circRNAs have the ability to improve the 
efficiency of translation [25]. Interestingly, according 
to mass spectrometry, 50% of translatable endogenous 
circRNAs undergo rolling ring translation [32, 63, 67]. 
Given that circRNA lacks the general translational 
elements, a large number of products translated from 
circular RNAs are short in length and lower efficiency 
than that from mRNAs. Moreover, there are still issues 
that need to be further answered, such as which factors 
regulate the translation of circRNA, and what is the 
relationship between the translation product of circRNA 
and that of its corresponding linear transcript?

CircRNA degradation
Due to the special structural characteristics of 
circRNA, it cannot be degraded by RNase H, which is 
conventionally used to eliminate linear RNA [15]. The 
specific degradation mechanism of circRNA is currently 
unclear. Several studies have found that miRNA can 
regulate the degradation of circRNA [22, 70]. For 
example, CDR1as can be degraded via sponging by miR-
671 through Argonaute 2 (Ago2)-mediated degradation 
[55]. Circular intronic RNAs (ciRNAs) escape from DBR1 
debranching of intron lariats and are cotranscriptionally 
produced from pre-mRNA splicing, but their turnover 
and mechanism of action have remained elusive [59]. Li 
et  al. reported that RNase H1 degrades a subgroup of 
circular intronic RNAs (ciRNAs), which have high GC% 
and often form R-loops  [16, 59] (Fig. 1h). For example, 
ci-ankrd52 facilitates R-loop formation, a process that 
allows the release of ankrd52 pre-mRNA from R-loops 
by ci-ankrd52 replacement and subsequent ciRNA 
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removal via RNase H1-mediated degradation [59]. This 
RNase H1/R-loop-dependent ciRNA degradation likely 
limits ciRNA accumulation and resolves R-loops at some 
GC-rich ciRNA-producing loci. In the autoimmune 
disease systemic lupus erythematosus (SLE), endogenous 
circRNAs bind to PKR via forming 16–26  bp imperfect 
RNA duplexes  [18]. Upon viral infection, PKR is 
activated by phosphorylation in early cellular innate 
immune responses, resulting in the release of circRNAs 
and global degradation by RNase L [18] (Fig.  1i). 
This study suggests that the structure of circRNAs is 
important in innate immunity and its degradation. 
Studies have also found that m6A RNA modification can 
promote the recruitment of endonucleases to degrade 
circRNA [9, 19] (Fig. 1j).

In addition to intracellular degradation, circRNA 
can also be transported out of the cell in the form of 
exosomes and into body fluids [36, 71, 72]. However, 
the reason why cells form exosomes is still unclear. Is it 
merely a tool for the exchange of information between 
cells? Alternatively, it may reduce the toxicity caused by 
excessive accumulation of circRNA in the cell and actively 
transport circRNA out of the cell. The degradation of 
exosomes may release the circRNA outside; but there 
is no conclusive mechanism yet [73]. Although there 
are some endeavors to understand the mechanism of 
circRNA decay in certain contexts, further studies are 
still needed to fully understand the common circRNA 
degradation mechanisms under different physiological 
conditions.

Principles and challenges for circRNA discovery 
and annotation
CircRNA constitutes a large amount of cell contents 
of unknown function [5, 9]. Accurate identification 
and annotation of novel emerging circRNAs are still 
urgently needed in this rapidly expanding research field. 
Recent advances in high-throughput RNA sequencing 
and related bioinformatics tools have accelerated 
research (Table  1). Since 2012, increasing numbers of 
bioinformatics tools have been developed to discover and 
annotate circRNAs. In 2013, find-circ became the first 
publicly available pipeline for identifying circRNAs from 
sequencing data [49]. Even today, many explorations of 
circRNAs still commence with RNA-seq data [74–77]. 
While RNase R-treated sequencing is considered easier 
and more accurate for circRNA detection, most circRNA 
detection tools can identify back-splice junction (BSJ) 
reads with high confidence from conventional RNA-
seq datasets [2, 49, 78]. Nevertheless, achieving both 
sensitivity and specificity in circRNA discovery remains 
a challenge, particularly in the context of identifying and 
annotating novel emerging circRNAs.

Canonical BSJ‑based circRNA identification
Many tools identify circRNAs by searching for specific 
BSJ sequences and performing different kinds of mapping 
(Fig.  2a). Most of the algorithms embedded in the tool 
are based on the segmentation of reads, while some other 
tools are based on predefined BSJ and circRNA flanking 
sequences. Examples include Find-circ [49], CIRI [79], 
CIRIexplorer [12, 13], Ularcirc [80], and circRNA-finder 
[81]. They all have their own merits or characteristics. 
Find_circ was the first circRNA prediction tool using the 
identification of back-spliced sequencing reads in RNA-
Seq. CIRI, CIRI2 and CIRCexplorer2 [13, 79, 82] all scan 
through sequence data first to identify junction reads in 
backspliced exons, intron lariats, and alternative splicing 
sites and then implements multiple filtration strategies to 
remove false-positives. Other identification of BSJ reads 
is based on splicing, such as MapSplice [74] and segemehl 
[83]. MapSplice improves the quality and diversity of read 
alignments of a given splice to increase accuracy and can 
be used for both short (< 75 bp) and long reads (≥ 75 bp) 
to detect novel canonical as well as noncanonical splices 
[74].

Although circRNA library preparation of RNA-seq by 
rRNA deletion and RNase R treatment followed by many 
circRNA identification tools is a better method, there 
exist some RNase R-sensitive circRNAs, such as circ_
CDR1as, which leads to the problem that these RNase 
R-sensitive circRNAs will be missing when only using 
RNase R-treated library preparation-based tools [15, 
49, 82] (Fig.  2b, c). To improve circRNA identification 
efficiency and reduce the false-positive rate, some 
researchers integrate current prediction algorithms to 
make an ensemble tool (Table  1). For example, RAISE 
[84], CircRNAwrap [85], and PcircRNA_finder [75] that 
was used in the study of plants. Different integrated 
identification pipelines satisfy the different research 
purposes for users. Recently, Gaffo et  al. developed 
CirComPara2 [86], which has been set to simultaneously 
use seven circRNA detection methods (integrated C2BW, 
C2SE, C2ST, C2TH, CIRI2 [82], DCC [78] and find_circ 
[49]) and identify the real circRNAs shared between at 
least two of these methods. The new trends of circRNA 
detection development are integrating variable tools 
because they can outperform single state-of-the-art 
circRNA identification tools and consistently achieve 
high recall rates without losing precision.

Fusion circRNA identification
Previous studies have shown that fusion genes can tran-
scribe into not only linear but also chimeric fusion cir-
cular RNAs (f-circRNAs), which are functional in gene 
expression regulation and implicated in malignant trans-
formation [87–90]. Currently, even though it remains a 
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Table 1 Bioinformatic tools for circRNAs discovery

Software Seq type Language Latest update Download link Characteristic Refs.

MapSplice II C++ 2016 https:// github. com/ david rober son/ MapSp 
lice2

/  [74]

PcircRNA_finder II Python, Perl 2016 http:// ibi. zju. edu. cn/ bioin plant/ tools/ 
manual. htm

Predict circRNAs in plants with frequently 
used circRNA detect tools

 [75]

PredcircRNATool II Python 2016 https:// sourc eforge. net/ proje cts/ predi circr 
natool/ files

Identification of circular RNAs based 
on conformational and thermodynamic 
properties in the flanking introns

 [108]

CircPro II Perl 2017 http:// bis. zju. edu. cn/ CircP ro Identify the protein‑coding potential 
circRNAs

 [198]

CIRI II Perl 2017 https:// sourc eforge. net/ proje cts/ ciri De novo assemble novel circRNA 
with variable sequencing data

 [82]

ACFS II Perl, Shell 2017 https:// github. com/ arthu ryxt/ acfs Discovery and annotate circRNA 
from single‑end RNA‑seq

 [91]

find_circ II Python 2017 https:// github. com/ marvin‑ jens/ find_ circ De novo assemble novel circRNA tran‑
scripts and widely used in circbase

 [49]

circseq‑cup II Python 2017 https:// github. com/ bioin plant/ circs eq‑ cup Identify full‑length sequence of circRNAs  [207]

KNIFE II Python, Shell, Perl 2017 https:// github. com/ linda szabo/ KNIFE Detect and quantify circRNAs from junc‑
tional alignments

 [208]

PredcircRNA II Python 2017 https:// github. com/ xypan 1232/ Predc 
ircRNA

Distinguish circRNA from other lncRNAs 
using multiple kernel learning

 [76]

CPSS II PHP, Perl, R 2017 http:// 114. 214. 166. 79/ cpss2.0 For small RNA sequencing data analysis  [209]

miARma‑seq II Perl, Python, R 2018 https:// sourc eforge. net/ proje cts/ miarma Integration of mRNA, miRNA and circRNA 
analysis

 [210]

CIRI‑AS II Perl 2018 https:// sourc eforge. net/ proje cts/ ciri Identify circRNA internal components 
and alternative splicing events de novo

 [211]

hppRNA II Perl, R 2018 https:// sourc eforge. net/ proje cts/ hpprna Analysis circRNA with different core‑work‑
flows from a large number of samples

 [212]

segemehl II C +  + 2018 http:// www. bioinf. uni‑ leipz ig. de/ Softw are/ 
segem ehl

Detect back‑splice reads and gene fusion  [83]

STARChip II Perl, Shell 2018 https:// github. com/ Losic Lab/ STARC hip Output the chimeric reads and discovery 
fusions circRNAs

 [89]

UROBORUS II Perl 2018 https:// github. com/ WGLab/ UROBO RUS Suggest detecting circRNAs with low 
expression levels in RNA‑seq

 [133]

WebCircRNA II Python 2018 https:// rth. dk/ resou rces/ webci rcrna/ 
downl oad

Using machine‑learning based method 
to predict stem cell specific circRNAs

 [213]

circRNA_finder II Perl, Awk, Shell 2019 https:// github. com/ orzec hoj/ circR NA_ 
finder

/  [81]

CircRNAFisher II Perl 2019 https:// github. com/ duoli nwang/ CircR 
NAFis her

Identify circRNA de novo  [214]

PRAPI III Python 2019 https:// pypi. org/ proje ct/ prapi One‑stop solution of post‑transcriptional 
regulation analysis for Iso‑seq, suitable 
for third generation sequencing

 [101]

CircRNAWrap II Shell, R 2019 https:// github. com/ liaos cience/ circR 
NAwrap

Integrate multiple circRNA‑detect tools 
to discovery confidence circRNAs

 [85]

RAISE II Shell, Perl 2019 https:// github. com/ liaos cience/ RAISE Integrating detection, quantification 
and prediction of internal structure

 [84]

DeepCirCode II Python, R 2019 https:// github. com/ BioDa taLea rning/ 
DeepC irCode

Using machine‑learning model to predict 
back‑splice sites of circRNA

 [77]

ROP II Shell, Python 2019 https:// github. com/ smang ul1/ rop Discover the source of all reads 
with Python2, but it is no longer main‑
tained

 [215]

ACValidator II Python, Shell 2020 https:// github. com/ tgen/ ACVal idator Assemble circRNA from pseudo‑reference 
file

 [216]

CircDBG II C +  + 2020 https:// github. com/ lxwgc ool/ CircD BG Detect circRNA by de Brujin graph  [217]

CircMarker II C +  + . Java 2020 https:// github. com/ lxwgc ool/ CircM arker /  [218]

AutoCirc II Perl 2020 https:// github. com/ chanz hou/ AutoC irc Identify back‑splice junctions of potential 
circRNAs from RNA‑seq de novo quickly

 [24]

Pcirc II Python 2020 https:// github. com/ Lilab‑ SNNU/ Pcirc Identify plant circRNA with random forest 
methods

 [110]

cirRNAPL II Java 2020 http:// server. malab. cn/ CirRN APL Identification of circRNAs based 
on extreme learning machine

 [109]

https://github.com/davidroberson/MapSplice2
https://github.com/davidroberson/MapSplice2
http://ibi.zju.edu.cn/bioinplant/tools/manual.htm
http://ibi.zju.edu.cn/bioinplant/tools/manual.htm
https://sourceforge.net/projects/predicircrnatool/files
https://sourceforge.net/projects/predicircrnatool/files
http://bis.zju.edu.cn/CircPro
https://sourceforge.net/projects/ciri
https://github.com/arthuryxt/acfs
https://github.com/marvin-jens/find_circ
https://github.com/bioinplant/circseq-cup
https://github.com/lindaszabo/KNIFE
https://github.com/xypan1232/PredcircRNA
https://github.com/xypan1232/PredcircRNA
http://114.214.166.79/cpss2.0
https://sourceforge.net/projects/miarma
https://sourceforge.net/projects/ciri
https://sourceforge.net/projects/hpprna
http://www.bioinf.uni-leipzig.de/Software/segemehl
http://www.bioinf.uni-leipzig.de/Software/segemehl
https://github.com/LosicLab/STARChip
https://github.com/WGLab/UROBORUS
https://rth.dk/resources/webcircrna/download
https://rth.dk/resources/webcircrna/download
https://github.com/orzechoj/circRNA_finder
https://github.com/orzechoj/circRNA_finder
https://github.com/duolinwang/CircRNAFisher
https://github.com/duolinwang/CircRNAFisher
https://pypi.org/project/prapi
https://github.com/liaoscience/circRNAwrap
https://github.com/liaoscience/circRNAwrap
https://github.com/liaoscience/RAISE
https://github.com/BioDataLearning/DeepCirCode
https://github.com/BioDataLearning/DeepCirCode
https://github.com/smangul1/rop
https://github.com/tgen/ACValidator
https://github.com/lxwgcool/CircDBG
https://github.com/lxwgcool/CircMarker
https://github.com/chanzhou/AutoCirc
https://github.com/Lilab-SNNU/Pcirc
http://server.malab.cn/CirRNAPL
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challenge to identify fusion circRNAs owing to their gen-
eral sparsity, low abundance in cells, heavy background 
noise in RNA-seq and perhaps imperfect computational 
methods, researchers have endeavored to develop bio-
informatics approaches to systematically identify fusion 
transcripts, specifically detecting f-circRNAs in can-
cer cells (Table 1). ACFS has the ability to detect fusion 
events and recognize f-circRNAs from RNA-Seq data 
accurately [91]. However, f-circRNA detectors may suffer 
from a high false-positive rate and a significant increase 
in the computational burden owing to the detection algo-
rithm performance. Identification of f-circRNAs requires 
detection of the BSJ site within the gene fusion events. 
STAR Chimeric Post (STARChip) is an open-source soft-
ware based on the STAR aligner that can simplify filter 
high-quality chimeric alignments and improve f-circRNA 

identification to annotate f-circRNA in a rapid, efficient 
and scalable manner [89]. Cai et al. developed a compre-
hensive Python-based workflow called “Fcirc” to identify 
linear and circular RNA transcripts from known fusion 
events in RNA-Seq datasets [92]. It requires already 
known gene fusions as a reference to build the bipartite 
graph of gene pairs, which is different from fusion detec-
tion tools such as ChimeraScan [88], FusionCatcher 
[93], JAFFA [94], TrinityFusion [95] and STAR-Fusion 
[95]. Therefore, Fcirc can detect f-circRNAs from known 
fusion events with higher specificity, a lower false-pos-
itive rate and shorter computing times [92]. Usefully, 
Fcirc is an open-friendly comprehensive pipeline that 
can allow users to add their own fusion gene pairs of 
interest at their convenience and regularly update newly 
emerging fusion genes from common multiple databases 

Table 1 (continued)

Software Seq type Language Latest update Download link Characteristic Refs.

circDeep II Python 2020 https:// github. com/ UofLB ioinf ormat ics/ 
circD eep

Identification of circRNAs with deep 
learning

 [111]

CLEAR II Python 2020 https:// github. com/ YangL ab/ CLEAR Combine with ribo‑seq & RNA‑seq 
as input, and quantify the expression 
of circRNAs

 [219]

NCLcomparator II Roff 2020 https:// github. com/ Trees Lab/ NCLco 
mpara tor

Detect circRNAs by combined several 
non‑co‑linear transcript

 [220]

CIRCexplorer II Python 2021 https:// github. com/ YangL ab/ CIRCe xplor 
er2

De novo assemble novel circRNA 
with supporting many common aligners

 [13]

CIRI‑full II Perl 2021 https:// sourc eforge. net/ proje cts/ ciri Reconstruct and quantify full‑length circu‑
lar RNAs from RNA‑seq data sets

 [134]

CIRI‑long III Perl 2021 https:// sourc eforge. net/ proje cts/ ciri Identify circRNA from long‑reads sequenc‑
ing data

 [102]

CIRIquant II Perl 2021 https:// sourc eforge. net/ proje cts/ ciri Quantify circRNA expression from RNA‑
seq data

 [221]

CirCompara2 II Python, R 2021 https:// github. com/ egaffo/ CirCo mPara2 Integrate multiple circRNA‑detect tools 
to discovery confidence circRNAs

 [86]

circAST II Python 2021 https:// github. com/ xiaof engso ng/ CircA ST Assemble full‑length circRNAs 
and quantification using RNA‑Seq data 
with the back‑spliced events

 [222]

DCC and CircTest II Python 2022 https:// github. com/ diete rich‑ lab/ DCC Detect and quantify circRNAs from chi‑
meric reads

 [78]

Ularcirc II R 2022 https:// github. com/ VCCRI/ Ularc irc Analysis and visualize the canonical 
and back‑splice junctions, annotate cir‑
cRNA with overlapping gene information

 [80]

NCLscan II C +  + , Python 2022 https:// github. com/ Trees Lab/ NCLsc an Identify both intragenic and intergenic 
non‑co‑linear transcript

 [205]

circall II C +  + , R 2022 https:// github. com/ datngu/ Circa ll Discovery circRNAs from paired‑end 
RNA‑seq

 [223]

CYCLeR II R 2022 https:// github. com/ stiv1n/ CYCLeR Reconstruct and quantify circRNAs 
from RNA‑seq datasets accurately

 [224]

stackCirRNAPred II Python 2022 https:// github. com/ xwang 1427/ Stack 
CirRN APred

Identification of circRNAs based on stack‑
ing strategy

 [107]

circtools II Python, R 2023 https:// github. com/ diete rich‑ lab/ circt ools Integrate the cumbersome circRNA analy‑
sis process of analysis

 [225]

circfull III Python 2023 https:// github. com/ yange nce/ circf ull Detect and quantify full‑length circRNA 
isoforms from circFL‑seq

 [105]

isocirc III Python, R 2023 https:// github. com/ Xingl ab/ isoci rc Integrated pipeline to characterize 
full‑length circRNA isoforms using rolling 
circle amplification

 [104]

https://github.com/UofLBioinformatics/circDeep
https://github.com/UofLBioinformatics/circDeep
https://github.com/YangLab/CLEAR
https://github.com/TreesLab/NCLcomparator
https://github.com/TreesLab/NCLcomparator
https://github.com/YangLab/CIRCexplorer2
https://github.com/YangLab/CIRCexplorer2
https://sourceforge.net/projects/ciri
https://sourceforge.net/projects/ciri
https://sourceforge.net/projects/ciri
https://github.com/egaffo/CirComPara2
https://github.com/xiaofengsong/CircAST
https://github.com/dieterich-lab/DCC
https://github.com/VCCRI/Ularcirc
https://github.com/TreesLab/NCLscan
https://github.com/datngu/Circall
https://github.com/stiv1n/CYCLeR
https://github.com/xwang1427/StackCirRNAPred
https://github.com/xwang1427/StackCirRNAPred
https://github.com/dieterich-lab/circtools
https://github.com/yangence/circfull
https://github.com/Xinglab/isocirc
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(COSMIC, FusionCancer, ChimerDB, FARE-CAFE, and 
TicDB) [93, 96–99].

circRNA identification using long‑read sequencing data
The circRNA discovery tools above are mostly compatible 
with the reads of next-generation RNA-seq [2, 100]. Due 
to the short reads in RNA-seq, these alignment-based 

algorithms have difficulty distinguishing circular reads 
from the exonic regions that overlap the corresponding 
linear transcripts. In recent years, with emerging long-
read sequencing technologies, including PacBio and 
Oxford Nanopore, reconstruction of transcript isoforms 
has become much easier [101–104]. Thus, the application 
of long-read sequencing technologies will lead to a 
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Fig. 2 Workflow of BSJ‑based circRNA identification. a The canonical workflow of circRNA identification tools that search for the specific BSJ 
sequences in the sequencing data and map to genome. b circRNA enriched by rRNA deleted and RNase R treatment before library. c circRNAs 
fragment into short reads and BSJ detecting in RNA sequencing. d After enrichment, the circRNA pool was nicked to generate large fragments, 
and then the obtained circRNA pool aligns with the ONT long‑read sequencing protocol. e Discovery tools identify the full‑length circRNA isoforms 
using rolling circle amplification followed by nanopore long‑read sequencing
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novel generation of circRNA discovery tools that have 
the ability to achieve high-throughput detection of full-
length circRNAs and improve sensitivity and specificity. 
circNick-LRS [103] (Fig. 2d) is the first reliable method to 
use long-read nanopore sequencing to detect circRNAs 
in both humans and mice.

Of note, due to circNick-LRS and circPanel-LRS 
eliminating the need for prior circRNA enrichment, a 
large number of nonconical splicing events in the global 
genome have been found to produce various types of 
circRNAs, including novel exons, intron retention and 
microexons. Both circFL-seq [105] and isoCirc [104] 
identify full-length circRNA isoforms using rolling 
circle amplification followed by nanopore long-read 
sequencing (Fig.  2e). Significantly, the low abundance 
circRNA reads could be enriched and identified using 
rolling circles and long-read sequencing. Zhao’s team 
developed an algorithm called the circRNA identifier 
using long-read sequencing data (CIRI-long) (Fig.  2e) 
to reconstruct the sequence of circRNAs [102, 106]. 
CIRI-long not only enables unbiased reconstruction 
of full-length circRNA sequences but also identifies 
mitochondria-derived circRNAs, transcriptional read-
through circRNAs, and noncanonical AG/GT splicing 
circRNAs, which other methods to detect. Interestingly, 
CIRI-long identified a novel type of intronic self-ligated 
circRNA with a different incompletely characterized 
internal GT/AG splice signal rather than the flanking 
AG/GT signal in most exonic and intronic-exonic 
circRNAs [102]. With the development of sequencing 
technology, circRNA discovery tools provide insights 
into circRNA complexity that will further advance this 
rapidly expanding research field.

circRNA identification using machine learning
Because the above methods always require RNA-seq 
data as input, circRNA signals with low abundance 
are usually missed [78, 100]. It is necessary for us to 
develop a novel tool to identify circRNAs at low lev-
els. Machine learning algorithms establish some map-
ping rules based on the knowledge and characteristics 
of the real known circRNAs (Table  1). For example, 
PredcircRNA [76] and StackCirRNAPred [107] predict 
whether an unknown RNA sequence possibly comes 
from circRNA by some common reliable features, 
such as ALU repeats, structural motifs and sequence 
motifs [15, 76]. Other machine learning circRNA pre-
diction tools based on the characteristics of nucleotide 
sequences are PredicircRNATool [108], DeepCirCode 
[77], CirRNAPL [109], PCirc [110], circDeep [111], etc. 
CirRNAPL is a user-friendly web server that extracts 
the structural features and pseudo-ribonucleic acid 

composition of circRNA to optimize the extreme learn-
ing machine based on the particle swarm optimization 
algorithm, which achieves identification accuracy in 
three public datasets [109]. Further improvements in 
the sensitivity and specificity of classifying circRNA 
from other lncRNAs can be found in circDeep, which is 
an end-to-end deep learning framework [111]. Consid-
ering the growing number of circRNA sequences and 
their splicing complexity, advanced parallel technology 
is highly recommended in circRNA discovery.

Database for circRNA annotation and functional study
With the development of bioinformatic tools for 
circRNAs, an increasing number of public circRNA 
databases have emerged [20, 100, 112–114]. The most 
well-known and comprehensive database is circBase, 
which encompasses over 90,000 circRNAs along with 
their genomic coordinates, strands, annotations, and 
other relevant information [113]. These circRNA 
databases have become widely utilized in annotation 
pipelines, facilitating the research and analysis of 
circRNAs [100, 113]. Furthermore, several databases have 
been developed to gather diverse attributes of circRNAs 
beyond basic sequence information, offering unique 
features for research purposes [2, 64, 100, 115]. Notably, 
riboCIRC and TransCirc are comprehensive databases 
that specifically focus on potential translatable circRNAs 
[64, 116]. They provide predictions of circRNA-derived 
open reading frames (cORFs) and annotations of cORF-
encoded peptides, supported by evidence of translation.

In recent years, the clinical significance of circRNAs 
has gained substantial attention, with increasing 
evidence showing their potential as clinical biomarkers 
and therapeutic targets [67, 114, 117, 118]. Specialized 
databases such as MiOncoCirc focus on providing 
information on the association between circRNAs and 
cancer [20]. Lnc2Cancer 3.0 has been updated to include 
circRNA-cancer associations and presents information 
on regulatory mechanisms, biological functions, and 
clinical applications of circRNAs in cancer [115]. 
Another comprehensive database, CircR2Disease v2.0 
[119], provides experimentally validated relationships 
between circRNAs and various diseases. ExoRBase 2.0 
concentrates on RNAs found in extracellular vesicles, 
encompassing circRNAs [120]. This database sheds light 
on the alterations of circRNAs in extracellular vesicles 
under both physiological and pathological conditions. 
At the same time, functional circRNA has emerged as a 
prominent research focus within the field of noncoding 
RNA. Several databases, including CircFunBase [112], 
deepBase [121], and circBank [122], provide valuable 
information on the interactions of circRNAs with various 
types of RNAs and proteins.
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Despite progress in circRNA detection and annotation, 
the lack of standardized naming conventions remains a 
pressing issue in this field. The diverse naming methods 
used across different databases and articles have created 
a significant barrier for research, leading to information 
duplication and errors. Some databases use a ’circ_’ prefix 
followed by a numeric ID or the parental gene symbol to 
name circRNAs [49, 113]. However, this inconsistent and 
arbitrary naming approach hampers the establishment 
of an integrated circRNA database. To address this 
issue, Chen et  al. proposed a clear naming system for 
circRNAs. According to this system, a new circRNA can 
be named ’circ + ’ followed by the parental gene name 
(separated by ’::’ in the case of fusion genes), the number 
of its exon, and ’RI’ if it remains in an intron or ’S’ if it 
exhibits different internal splicing patterns [50]. We 
strongly encourage researchers to embrace these clear 
naming rules to promote consistency and facilitate data 
integration.

New insight into strategies to determine circRNA functions
Several methods have been developed to study the 
functions of circRNAs [9, 46]. We systematically 
summarized current strategies used to explore circRNAs, 
including ceRNA prediction [22], knockdown or out 
of functional circRNAs, overexpression of functional 
circRNAs [123–131], and circRNA-RBP prediction [132]. 
The advantages and disadvantages of these methods 
have also been discussed. Some new insights may 
help improve the strategies of circRNA research and 
applications of therapeutic potential.

Strategies for circRNA detection
CircRNA sequencing of rRNA-depleted and RNase 
R-treated cells is the method used to discover novel cir-
cRNAs and was also used in all early circRNA profiling 
studies [20, 82, 133]. Based on the BSJ feature of circR-
NAs, candidate circRNAs were further identified and 
quantified. In recent years, many common detection 
techniques for various types of RNAs have also been 
applied in circRNA studies [78, 85, 105, 134]. Due to the 
lack of clarity regarding circRNA production or splicing, 
these detection methods have specific advantages and 
disadvantages (Fig. 3).

Northern blotting is the gold standard method for 
validating all kinds of RNAs, including circRNAs [9, 18, 
123, 128]. Antisense probes are designed complementary 
to the sequences spanning the BSJ point in the circRNAs 
of interest, which are loaded on a denatured agarose gel 
containing formaldehyde, and hybridization is performed 
[18, 128] (Fig.  3a). This technique can precisely identify 
and quantify targeted circRNAs distinguished from 
linear RNAs transcribed from the same gene. However, 

the disadvantage of northern blotting is also obvious. 
This method requires a large amount of RNA, involves 
multiple steps, has a high background and often uses 
radioactively labeled probes [18]. This method generally 
requires many skills and is also time-consuming. 
Generally, candidate circRNAs are further validated and 
quantified by reverse transcription (RT) and quantitative 
PCR (qPCR) assays [2, 125, 135] (Fig.  3b). Although 
RT‒PCR is a timesaving and effective technique by 
means of a real-time PCR machine, the designed primer 
often cannot precisely distinguish the circular from the 
linear transcript during the fast PCR process with many 
copies of the amplified products [2]. The formation of 
concatemers by rolling circle amplification during the 
RT step is also a challenge that may hamper the accurate 
quantification of circRNAs.

Interestingly, droplet digital PCR (ddPCR) can 
overcome this shortcoming brought by RT‒qPCR [2, 
33]. ddPCR is a novel technology that can determine the 
absolute quantification of a candidate circRNA using 
the ratio of positive to negative droplets, which exhibits 
a higher sensitivity even in plasma that has a very low 
amount of circRNA [33, 136] (Fig.  3c). However, the 
reagents for ddPCR assays are always expensive compared 
to other methods. If circRNAs can be quantified via 
high-throughput techniques, NanoString Technology 
is a good choice [4, 127] (Fig.  3d). The BSJ flanking 
sequences are captured by a biotinylated probe and a 
reporter probe loaded with fluorescent barcodes, and 
the circRNA-based barcodes on the reporter probes can 
finally be counted by a high-resolution charge-coupled 
device camera (CCD) and digitization. This enzyme-free 
technique also works well to detect paraffin-embedded 
RNA [4]. In situ hybridization (ISH) is another technique 
used to visualize and quantify circRNAs of interest  [4, 
125] (Fig. 3e). This technique designs an oligonucleotide 
probe, spanned to the BSJ site of circRNA, coupled to 
fluorescent dyes, to visualize a circRNA of interest in 
fixed and permeabilized cells using confocal microscopy. 
The value of fluorescent signals can reflect the quantity 
of circRNA to some extent. However, the ISH approach 
always requires the use of multiple probes covering the 
unique BSJ region, which may result in poor efficiency 
and a high false-positive rate. Interestingly, the dCas13a-
EGFP system can be used to image and track specific 
circRNAs [137–139]. The special BSJ sequences could be 
a limit of guide RNA design in this approach.

New insight into the knockdown/out of functional 
circRNAs
Downregulating the expression of circRNAs is a popu-
lar strategy to explore their cellular functions [4, 5, 
9]. Most circRNA knockdown methods are based on 
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the complementary base pairing of seed sequences to 
BSJ junction sites, including siRNA, shRNA, ASO, or 
CRISPR/Cas series systems (Fig. 4a–c).

Introducing siRNA corresponding to circRNA 
specifically targeting BSJ into transfected cells is a 
convenient and effective method to inhibit the expression 

of circRNA in cancer cells [46, 125]. The cells can also be 
transfected with lentivirus carrying shRNA according to 
the siRNA sequence to achieve stable knockdown [46, 
125] (Fig. 4a). However, the siRNA method executes the 
knockdown based on the complementary base pairing of 
seed sequences, which only has 6–8 bases sponged to the 
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Fig. 3 Strategies for circRNA detection. a Northern blot to identify and quantify circRNAs with a BSJ‑spanning probe. b Quantification of circRNAs 
by reverse transcription (RT) and quantitative PCR (qPCR) assays. A pair of divergent primers are used. c Droplet digital PCR (DdPCR) is a novel 
technology determines the absolute quantification of a candidate circRNA using the ratio of positive to negative droplets. d NanoString Technology 
captured the BSJ flanking sequences by a biotinylated probe and a reporter probe loading fluorescent barcodes, followed by a high‑resolution 
charge‑coupled device (CCD) camera and digitization. e In situ hybridization used to visualize and quantify the interest circRNAs. There are two 
methods, which based on an oligonucleotide probe coupled to fluorescent dyes, and a sgRNA in a dCas13a‑EGFP system



Page 12 of 30Feng et al. Experimental Hematology & Oncology           (2023) 12:91 

BSJ junction site, which may produce an off-target effect 
on the linear lncRNA or mRNA. The CRISPR/Cas13d 
system is a useful tool for efficiently degrading circRNAs 
and reducing false targeting [124, 129] (Fig. 4b). Efficient 
Cas13d knockdown requires 28–30 nt long spacers and 
is intolerant to mismatches in spacers [129, 140, 141]. 
For example, Li et al. constructed a CRISPR–RfxCas13d 
system and found that gRNA spacers with the BSJ in 
the center (–7 to 7 nucleotides spanning the BSJ site) 
exhibited high knockdown efficiencies without affecting 
linear cognate RNAs [124]. Because circular and linear 
RNA have distinct biogenesis efficiencies, conformations 
and turnover rates, RfxCas13d-based RNA interference 
specifically suppresses circular but not linear RNA [124]. 
Another advantage is that CRISPR/Cas13-based gRNA, 
which carry a spacer sequence specifically targeting and 
spanning the BSJ site within a relatively long sequence, 
should have the capability to distinguish between circular 
and linear RNAs and thereby reduce off-target effects on 
linear lncRNA or mRNA. The combination of lentiviral 
vehicle and CRISPR/Cas13d can help in investigating the 
function of circRNA specificity in a xenotransplantation 
model and drug sensitivity screening.

In recent years, CRISPR/Cas9, which is a highly 
specific and efficient tool to edit the genome, has also 
been used in circRNA knockout [123, 142]. In general, 
the CRISPR/Cas9 system knocks out special circRNAs by 
deleting intronic complementary sequences neighboring 
circularized exons in circRNA biogenesis [5, 46, 143–
145] (Fig. 4c). For example, sgRNA specifically targeting 
the inverted complementary sequence in the intron of 
GCN1L1 can knock circGCN1L1 out but not disturb the 
corresponding linear mRNA [145]. Similarly, CRISPR/
Cas9 removal of the downstream inverted repeat 
ALU element can prevent circHIPK3 formation [144]. 
However, due to the complexity of circRNA biogenesis, 
it is difficult to determine which intronic sequences are 
targeted by sgRNAs in the CRISPR/Cas9 system. Apart 
from targeting intronic sequences, another challenge of 
circRNA knockout using the CRISPR/Cas9 system is that 
many circRNAs are produced from alternative splicing 
between exons and introns in the genome. Alternative 
splicing-based circRNA cannot directly target the 
sequence by sgRNAs, which may interfere with linear 
mRNA production [146].

Therefore, it is still necessary to gain insight into 
circRNA knockdown-based strategies, which should 
be considered with many different factors involved in 
circRNA production.

Overexpression of functional circRNAs
Several methods based on chemical synthesis and 
enzymatic ligation have been used to generate circRNAs 

in  vitro; however, circRNA production in  vivo has only 
recently been delineated [47, 128, 147, 148]. There is a 
circRNA-expressing vector that splices intron-containing 
tRNAs to produce circRNAs in cells [47, 148] (Fig.  4d). 
Construction of the tRNA-derived intronic-circRNA 
with a fluorescence-based RNA reporter allows us to 
characterize the expression of and visually localize 
circRNA. Because tRNA is constitutively expressed in all 
cells, tRNA-derived intronic circRNAs are theoretically 
expressed at high-copy and stable levels [47, 148]. Due 
to the feature of tRNA biogenesis by the processivity 
of pol III, this method have a circRNA size limitation 
(generally < 250 nt) [47]. Another in  vivo circularized 
RNA was generated by the Group I intron of the phage 
T4 thymidylate synthase (td) gene transfected into 
cultured mammalian cells [62, 149]. However, both 
tRNA- and td gene-based RNA circles induced some 
extra sequences that tended to form 16–26 bp imperfect 
dsRNA regions, which generally activated remarkable 
immune responses via recognition by the pattern 
recognition receptor retinoic-acid-inducible gene I (RIG-
I) or PKR [62, 128, 149]. We previously constructed a 
universal circRNA expression vector containing flanking 
introns from SUZ12 that ensured correct splicing to 
express circRNA without extra sequences  [125] (Fig. 4e). 
We added a sequence that is the reverse complement 
repeat of the first 100  bp of the 5’ intron component 
into the vector following the 3’ intron to promote the 
interaction between the flanking introns, facilitating 
circRNA production. For example, the sequence of 
exons 8–9 of MYBL2 was inserted into the vector, and 
circMYBL2 was highly expressed, i.e., approximately 100-
fold, in 293 T cells [125].

Considering the complexity of circRNA biogenesis, 
suitable strategies are needed for studying the different 
structural and functional features of circular RNA occur-
ring in cells [5].

The replacement of stronger enhancers including 
ICSs, Alu elements, other RNA pairing structures 
and adding BSJ associated RBPs may be strategies to 
improve circRNA overexpression [5, 12, 150]. In contrast, 
Chen’s laboratory introduced in  vitro synthesized RNA 
circles produced by T4 RNA ligase without extraneous 
fragments that present minimized immunogenicity, 
suggesting a useful method for the future synthesis of 
circular RNAs [128] (Fig. 4f ).

ceRNA prediction
When circRNAs enter the cytoplasm, some of them 
become competitive endogenous RNAs (ceRNAs) [22, 
100]. CircRNA can bind miRNA to prevent it from bind-
ing to target genes and changing the regulatory ability 
of target gene mRNA. Bioinformatics algorithms can be 
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used to predict whether circRNAs have matching miR-
NAs  [151–153] (Fig. 5a). The AGO2 protein was identi-
fied by analyzing the experimental data for CLIP-seq and 
functional genomic annotations, and the communication 
between miRNA and targeted circRNA was predicted 
after analysis and processing [151].

circRNA‑RBP prediction
Although circRNA-miRNA sponging is the most well-
known function, increasing evidence has also shown that 
circRNAs can interact with RBPs to exert widespread 
regulatory effects [56, 132]. For example, circPABPN1 
can bind to HuR and prevent HuR from binding to 
PABPN1 mRNA, thereby reducing the translation of 
PABPN1 [154]. Some databases have summarized the 
interactions between circRNAs and RBPs. For example, 
CircInteractome provides miRNA and RBP binding 
sites on circRNA  [132]. starBase also concentrated and 
systematically identified RNA‒RNA and protein‒RNA 
interaction networks  [151].

To date, experimental research on circRNA-RBP 
interactions has mainly been conducted through RNA 
pulldown assays or RNA immunoprecipitation (RIP) 
for experimental analysis [56, 155] (Fig.  5b and c). 
Although these methods have been popularly used 
in many important discoveries, they still face many 
difficulties such as high costs, large tasks, and time 
consumption. Therefore, some programs that can predict 
the interaction of circRNA and RBP have been developed 
to compensate for the defects of classic experiments 
[56, 156]. Wang’s team used matrix factorization and 
neural networks (MFNNs) to construct a prediction 
framework based only on interaction matrices, which has 
a high prediction accuracy and is an effective prediction 
method [156]. CirRBP, a stacked operation ensemble 
deep learning model, can fuse binding sites from multiple 
databases via a localization algorithm and compensates 
for the defect that most previous prediction methods only 
identify circRNA-RBP binding sites based on a single data 
resource [56]. However, CirRBP cannot provide accurate 
binding sites but only provides probability values of 
sequence fragments. Then, CirRBP was developed into 
an open-source web application called CRWS, which 

can allow users to change the codes in their own needs. 
CRWS is a useful online tool to use multi-source data 
to train models and predict precise binding sites [56]. 
Therefore, highly efficient and convenient circRNA-RBP 
prediction strategies will undoubtedly be useful for the 
study of circRNA functions.

circR‑loops: circRNA:DNA hybrids
R-loops are widespread structures that are often formed 
co-transcriptionally [59, 157–159]. The genome-
wide R-loop signature was generally identified by 
immunoprecipitation with the R loop-specific S9.6 
antibody or catalytically inactive human RNase H1 
(dRNH1) coupled with high-throughput sequencing 
of the resident DNA and RNA [59, 158, 160]. Apart 
from nascent mRNAs, DRIP-seq data have also shown 
that lncRNAs and circRNAs frequently form R-loop 
structures [17, 161] (Fig. 5d). These pervasive formations 
of circR-loops regulate diverse types of biological 
processes, including gene expression and DNA damage 
in cells [16, 17, 161–163]. For example, circSEP3 can 
form an R-loop by binding strongly to its cognate 
DNA locus, leading to SEPALLATA3 transcriptional 
pausing and coinciding with alternative splicing [163]. 
Overexpression of circSMARCA5 can generate a 
circR-loop at its parent gene locus, which results in 
transcriptional pausing at exon 15 of SMARCA5 and 
is sufficient to improve sensitivity to cytotoxic drugs 
in breast cancer [162]. Interestingly, a recent study 
showed that a set of circRNAs are enriched within the 
breakpoint cluster region (bcr) of MLL and can form 
circR-loops at their cognate loci [17]. These circR-
loops promote transcriptional pausing, proteasome 
inhibition, chromatin reorganization, and double-strand 
DNA breaks (DSBs). Overexpressing circMLL (9,10) 
can trigger the de novo generation of clinically relevant 
chromosomal translocations mimicking the MLL 
recombinome in mouse leukemia xenograft models [17]. 
These studies suggest that nuclear circRNAs may form 
circR-loops and play both physiological and pathological 
roles in cells. Abnormalities in circRNA export from the 
nucleus can lead to diseases. Chen et  al. identified that 
conserved exportin 4 (XPO4) can modulate circRNA 

(See figure on next page.)
Fig. 5 Methods to explore the possible mechanisms of circRNAs. a AGO2 CLIP‑seq to predict the communication between miRNA and targeted 
circRNA. b, c circRNA‑RBP interactions is mainly through RNA pull‑down assay (b) or RNA immunoprecipitation (RIP) for experimental analysis (c). 
b In the RNA pull‑down assay, a biotin‑labeled probe recognized the BSJ of circRNA and then captured by biotin coupled magnetic beads. Finally, 
mass spectrum (MS) and western blot analysis to determinate the circRNA binding proteins. c In RIP‑seq assay, the candidate RBP was first binds 
to the magnetic beads via antibody, and then the interacted circRNAs were analyzed by sequencing and RT‑PCR. d circR‑loops are identified 
by immunoprecipitation with the R loop‑specific S9.6 antibody or catalytically inactive human RNase H1. Discovery the circR‑loops in DRIP‑seq data. 
circR‑loops regulate diversity types of biological process, including transcriptional pausing, DNA damage, and double‑strand DNA breaks (DSBs)
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nuclear export [16]. They observed that knockdown of 
XPO4 can improve circRNA nuclear retention, circR 
loop formation and DNA damage [16].

Recent studies may suggest that many circRNAs in 
circR-loops regulate the cognate DNA locus or mRNA 
transcription in a cis manner [16, 17]. It is still unclear 
whether these circRNAs in circR-loops can play roles in 
trans. There is still an interesting question that whether 
circR-loops interact with special RBPs to mediate 
chromatin marks, chromatin accessibility or active 
chromatin landscape.

New insights into biomedical application of cancer‑related 
circRNA
Because circRNA has tissue- and cancer-specific 
expression and stability in body fluids, it can be used 
as a rapid, accurate, and noninvasive biomarker for 
early diagnosis and prognosis [20, 37, 114, 130, 164]. 
Several circRNAs are reported to play important 
roles in tumorigenesis and progression, as well as in 
chemotherapeutic resistance, and are potential promising 
targets in cancer treatment [66, 115, 130].

CircRNA is a promising biomarker in cancer
Cancer cells present aberrant expression of circRNAs, 
which are usually related to some clinical characteristics, 
such as tumor type, tumor size, histological grade, 
tumor invasion and metastasis (Table  2). For example, 
in non-small cell lung cancer, low expression of hsa_
circ_0001073 may distinguish adenocarcinoma from 
squamous cell carcinoma [165]. In breast cancer, 
circRNA expression profiles may distinguish between 
estrogen receptor-positive, HER2-positive, and 
triple-negative breast cancer [166]. In tissue samples, 
the upregulation of hsa_circ_0003823, circPUM1, 
circCYP24A1, and circCNOT6L presented diagnostic 
performance with considerable sensitivity and specificity 
values, which exhibited relatively higher recurrence 
of esophageal squamous cell carcinoma (ESCC) 
[167–170]. In the plasma samples, Hu et  al., found that 
highly concentration of plasma circGSK3β and CEA 
can indicate the recurrence/metastasis of ESCC [171]. 
CircRNA also showed the ability to distinguish different 
nontumor diseases [172]. The hsa_circRNA_0001599 was 
highly expressed in large-artery atherosclerosis (LAA)-
stroke patients, revealing its potential as a biomarker of 
LAA-stroke diagnosis [172]. The plasma concentration 
of CircBRAP can be a predictor of preeclampsia [173]. 
CircRNA can be quite stable in biological fluids, and 
detection of circulating circRNA may be an excellent 
noninvasive biopsy that is likely to become a new method 
for cancer detection in the future.

CircRNAs can not only distinguish different tumor 
subtypes but also indicate different prognostic levels in 
the body [130, 174, 175]. For example, CIRS-7 is associ-
ated with poor prognosis in most cancers [174]; circU-
BAP2 has also been identified as an oncogenic factor 
associated with poor prognosis [174], while circLARP4 
is a tumor suppressor associated with good prognosis in 
several cancers [176]. circRNA-CREIT was also recently 
found to be abnormally downregulated in doxorubicin-
resistant triple-negative breast cancer (TNBC) cells and 
associated with poor prognosis [40].

CircRNAs are promising therapeutic targets
In recent years, numerous dysregulated circRNAs have 
been found to affect the proliferation, apoptosis, metas-
tasis, DNA damage and other life activities of cancer cells 
[3, 10, 99, 130]. Therefore, similar to miRNAs and lncR-
NAs, circRNAs can also be used as therapeutic targets for 
cancer treatment [54, 130, 177, 178] (Table 2). For exam-
ple, intratumoral injection of circNRIP1 siRNA could 
significantly inhibit the growth of gastric cancer in PDX 
mouse models, suggesting that oncogenic circNRIP1 may 
be a promising target for gastric cancer treatment [179]. 
Antisense oligonucleotides (ASOs) against circIPO11 
combined with the TOP1 inhibitor camptothecin (CPT) 
exert synergistic effects and can significantly suppress 
liver cell self-renewal and HCC propagation [123]. The 
knockdown of circMYBL2 in vitro and in vivo by siRNA 
and shRNA significantly inhibited the FLT3-ITD protein 
level and inhibited the proliferation of FLT3-ITD AML 
cells but had no effect on normal cells [125]. circIPO11 
knockout using CRISPR/Cas9 technology suppresses the 
progression of chemically induced liver cancer develop-
ment [123]. Notably, several circRNAs act as suppressors 
in cancer progression, indicating their antitumor effects 
[154, 180–184]. circANAPC7, newly discovered tumor 
suppressors, can significantly inhibit tumor growth and 
muscle atrophy in pancreatic cancer [180]. In vivo deliv-
ery of these kinds of tumor suppressor circRNAs may be 
a promising approach for anticancer therapy.

CircRNA regulates therapy resistance and targeted 
drug development
In the current clinical treatment of cancer, various 
chemotherapeutic drugs have been developed to inhibit 
the growth of cancer cells and have achieved good clini-
cal effects [185–187]. However, with the prolonged time 
of medication at any time, the drug resistance of cancer 
cells gradually increases, resulting in the gradual weak-
ening of the therapeutic effect, which is a major prob-
lem that has to be solved in clinical treatment [187, 188]. 
Recent studies show that circRNAs play a role in the 
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Table 2 Cancer‑related circRNAs

Cancer Name Up/down Characteristic Refs.

Hematologic malignancies

AML Circ_0009910 Up Silencing Circ_0009910 can significantly inhibit proliferation, sphere formation and promote 
apoptosis

 [226]

AML Circ‑SFMBT2 Up Silencing Circ‑SFMBT2 can inhibit the proliferation, migration, invasion and glycolysis of AML 
cells and induce apoptosis

 [227]

AML circ_0040823 Down Overexpression of circ_0040823 inhibited the proliferation of AML cells and induced 
apoptosis and cell cycle arrest

 [184]

AML hsa_circ_0079480 Up Associated with overall survival and relapse‑free survival of AML  [228]

AML circ_0004277 Down Overexpression of circ 0004277 inhibited the migration and invasion of AML cells  [183]

ALL Circ_0000745 Up Knockdown of Circ_0000745 inhibits cell cycle progression and glycolysis, and induces 
apoptosis and iron death

 [229]

ALL circ_0008012 Up related to proliferation and apoptosis of ALL cells  [230]

CLL circ‑CBFB Up Knockdown of circ‑CBFB inhibited the proliferation of CLL cells, stopped the cell cycle 
and induced apoptosis

 [231]

CLL hsa_circ_0132266 Down Inhibition of CLL cell apoptosis and impaired proliferation  [232]

CLL Hsa_circ_0064574 Up highly expressed in the plasma of CLL patients  [233]

CLL circZNF91 Up Silencing circZNF91 can inhibit CLL cell proliferation, induce apoptosis and block cell cycle  [234]

CML Hsa_circ_0058493 Up Increase the resistance of CML cells to imatinib  [235]

CML circ_0080145 Up Increase the resistance of CML cells to imatinib  [236]

CML circ_0051886 Up Increase the resistance of CML cells to imatinib  [236]

MM Circ_0000190 Down Inhibiting the viability, proliferation and inducing apoptosis  [237]

MM hsa_circ_0007841 Up Associated with drug resistance and chromosome aberration  [38]

MM circITCH Down Related to the resistance of MM cells to bortezomib (BTZ)  [238]

Digestive system malignancy

CRC Hsa_circ_0082182 Up Associated with tumor proliferation and lymph node metastasis  [239]

CRC Hsa_circ_0000370 Up Associated with tumor proliferation and lymph node metastasis  [239]

CRC hsa_circ_0004585 Up Positively correlated with tumor size  [240]

CRC hsa_circ_0000567 Down Negatively correlated with tumor size, lymph node metastasis, remote metastasis, and TNM 
staging

 [241]

CRC hsa_circ_0004771 Up Upregulated in tumor cell‑derived plasma exosomes  [242]

HCC circIPO11 Up Drives self‑renewal of liver cancer  [123]

HCC hsa_circ_0000798 Up High expression in liver cancer tissues was negatively correlated with the overall survival 
cycle of patients

 [243]

HCC hsa_circ_0027089 Up Distinguishing cirrhosis  [244]

HCC hsa_circ_0058124 Up Associated with invasive characteristics, also regulates the resistance of liver cancer cells 
to sorafenib

 [245]

HCC hsa_circSMARCA5 Down Related to proliferation, invasion and metastasis  [246]

HCC hsa_circ_0068669 Down Related to tumor microvascular invasion and TNM staging  [247]

HCC hsa_circ_0028502 Down associated with lymph node metastasis and TNM stage  [248]

HCC hsa_circ_0076251 Down Associated with Barcelona Clinic Liver Cancer (BCLC) stage  [248]

HCC circUBAP2 Up Negatively correlated with aggressive clinical characteristics  [249]

HCC circRNA‑YBX1 Down Mediate phase separation suppresses the metastasis

GC circNRIP1 Inhibit the growth of gastric cancer  [179]

GC hsa_circ_0003159 Down Negative correlation between tumor metastasis and TNM stage  [250]

GC hsa_circ_0000096 Down Affects the growth and migration of GC cells  [251]

GC hsa_circ_002059 Down Associated with distal metastasis of tumor cells and TNM staging  [252]

GC hsa_circ_0000190 Down Related to tumor diameter, lymphoid metastasis, distal metastasis and TNM stage  [253]

GC hsa_circ_0000181 Down Associated with tumor diameter, lymphoid metastasis  [254]

GC hsa_circ_0000467 Up Closely related to TNM staging  [255]

GC hsa_circ_0001895 Down Down‑regulated in GC tissue and precancerous stage of GC  [256]

GC hsa_circ_0017728 Up Associated with short overall survival, poor pathological differentiation, higher TNM stage 
and lymph node metastasis

 [257]
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Table 2 (continued)

Cancer Name Up/down Characteristic Refs.

GC circPDIA4 Up Accelerate the invasion of cancer cells in vitro, promote the progression of GC and indicate 
poor prognosis

 [258]

BC Hsa_circ_0001136 Up Associated with tumor grade, tumor stage, lymph node invasion and distal metastasis  [259]

BC hsa_circ_0137439 Up Related to tumor grade, tumor stage, lymph node invasion, also can distinguish 
between MIBC and NMIBC

 [260]

BC hsa_circ_0001361 Up Promoted the invasion and metastasis of bladder cancer cells and was positively correlated 
with pathological grade

 [261]

BC circSLC8A1 Down Overexpression inhibits the migration, invasion and proliferation of tumor cells  [262]

PC circANAPC7 Down Inhibits Tumor Growth and Muscle Wasting  [180]

PC Circ‑MBOAT2 Up Regulates cell proliferation, migration, invasion and glutamine catabolism  [181]

PC circRNA IARS Up Positively correlated with hepatic metastasis, vascular infiltration and TNM stage of pancreatic 
ductal adenocarcinoma (PDAC), and negatively correlated with postoperative survival time

 [263]

PC hsa_circRNA_001859 Down Inhibit the proliferation, invasion and EMT of pancreatic cancer  [264]

OSCC Hsa_circ_0001971 Up Related to TNM stage of tumor  [265]

OSCC Hsa_circ_0001874 Up Related to tumor grade and TNM stage  [265]

OSCC Hsa_circ_0003829 Down Negatively correlated with lymph node metastasis and TNM stage  [266]

OSCC Circ_0109291 Up Silencing circ_0109291 can improve tumor sensitivity to DDP  [267]

ESCC Hsa_circ_0003823 Up Promotes the Tumor Progression, Metastasis and Apatinib Resistance  [167]

ESCC circPUM1 Up Regulates oxidative phosphorylation  [168]

ESCC circCYP24A1 Up Facilitates esophageal squamous cell carcinoma progression  [169]

ESCC circCNOT6L Up Regulates cell development  [170]

ESCC circGSK3β Up Promotes metastasis  [171]

EC circ‑VIM Up Silencing circ‑VIM in vitro can inhibit immune escape and multiple carcinogenic activities 
of EC cells, as well as inhibit internal xenograft growth and lung metastasis

 [182]

Lung cancer

LC Hsa_circ_0001715 Up Related to TNM stage and distant metastasis of lung adenocarcinoma, and inversely 
proportional to overall survival

 [268]

LC Hsa_circ_0005962 Up Promote the proliferation of lung adenocarcinoma cells (LUAD)  [269]

LC Hsa_circ_0086414 Down Plasma hsa_circ_0086414 was related to EGFR mutations  [269]

LC Hsa_circ_002178 Up Promotes the expression of PDL1/PD1 in lung adenocarcinoma cells and is also present 
in exosomes

 [270]

LC Hsa_circ_0037515 Down Significantly down‑regulated in non‑small cell lung cancer (NSCLC)  [271]

LC Hsa_circ_0037516 Down significantly down‑regulated in non‑small cell lung cancer  [271]

LC hsa_circ_0001073 Down Indicates the lung adenocarcinoma (LUAD) subtype in non‑small cell lung cancer  [165]

LC hsa_circ_0001495 Up Indicates the squamous cell carcinoma (LUSC) subtype in non‑small cell lung cancer  [165]

Others

RC circHIAT1 Down Overexpression inhibits the malignant progression of clear cell renal cell carcinoma  [272]

RC hsa_circ_001895 Up Promotes ccRCC cell proliferation, invasion and migration and is associated with poor 
prognosis

 [273]

GM circRNA‑104718 Up Indicates a poor prognosis and promotes invasion and migration of tumor cells  [274]

GM circ‑GLIS3 Up Related to the resistance of temozolomide (TMZ) and promotes the proliferation, invasion 
and migration of glioma cells

 [275]

GM Circ_0047688 Up Promote malignant behavior of glioma cells  [276]

GM Circ_0001982 Up Promote the proliferation, migration and invasion of glioma cells  [277]

GM has‑circ‑0072688 Up Promote the proliferation of glioblastoma and inhibit apoptosis  [278]

GM hsa_circ_0030018 Up Promote proliferation and inhibit apoptosis of glioma cells  [279]

Breast cancer hsa_circ_0008673 Up Related to tumor size and distal metastasis  [280]

Breast cancer Circ‑LARP4 Down High expression indicates good prognosis and is negatively correlated with tumor size  [175]

Breast cancer circRNA‑CREIT Down Increases drug resistance in triple negative breast cancer (TNBC) and is associated with poor 
prognosis

 [40]

OC circBNC2 Down associated with advanced cancer and lymph node metastasis in epithelial ovarian cancer 
(EOC)

 [281]
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resistance of cancer cells to anticancer agents [33, 189, 
190]. They found that circRNA-SORE (also known as 
circRNA_104,797 and circ_0087293) was upregulated in 
sorafenib-resistant HCC cells, acting as ceRNA to isolate 
miR-103a-2-5p and miR-660-3p and competitively acti-
vate the Wnt/β-catenin pathway to promote sorafenib 
resistance  [191] (Fig.  6a). Interestingly, this team also 
reported that circRNA-SORE binds YBX1 and blocks 
PRP19-mediated YBX1 degradation. They found that 
silencing circRNA-SORE by injection of siRNA in  vivo 
could substantially overcome sorafenib resistance [41] 
(Fig.  6a). CircVMP1 could upregulate the expression of 
methyltransferase 3, N6-adenosine-methyltransferase 
complex catalytic subunit (METTL3) and SOX2 by act-
ing as a sponge of miR-524-5p, thereby promoting the 
progression of NSCLC and cisplatin (DDP) resistance 
[192]. These studies put forward a new idea for solving 
chemotherapeutic drug resistance by knocking down 
specific circRNAs to inhibit their function of promoting 
drug resistance.

CircRNAs can also interact with oncoproteins to 
help cancer cells establish drug resistance [33, 189, 
193, 194]. For example, circCDYL2 enhances the inter-
action between GRB7 and FAK by inhibiting the ubiq-
uitination degradation of GRB7, thereby maintaining 
the activation of downstream AKT and ERK1/2 sign-
aling pathways and leading to trastuzumab resistance 
in breast cancer [193] (Fig.  6b). Circ-HER2 encodes 
the small protein HER2-103, which promotes homo/
heterodimerization of epidermal growth factor recep-
tor (EGFR)/HER3 and activates AKT phosphorylation 
and malignant phenotypes [194]. Pertuzumab inhibits 
the tumorigenicity of circ-HER2/HER2-103-expressing 
TNBC cells but not circ-HER2/HER2-103-negative 
TNBC cells in  vivo [194]. These studies suggest that 
both knockdown of circCDYL2 and overexpression 
of circ-HER2/HER2-103 together can improve the 
outcome of drug therapy targeting HER2 signaling in 
TNBC. We previously also showed that circMYBL2 is 
more highly expressed in AML patients with FLT3-
ITD mutations [125] (Fig.  6c). Relapse of FLT3_ITD 
AML has been observed due to acquired resistance 
with secondary mutations in FLT3. shRNA-mediated 

circMYBL2 knockdown specifically inhibited FLT3-
ITD translation by preventing the binding of polypy-
rimidine tract-binding protein 1 (PTBP1) from FLT3 
messenger RNA and impaired the cytoactivity of 
inhibitor-resistant FLT3-ITD AML, suggesting that 
circMYBL2 knockdown was effective against FLT3-
ITD AML with quizartinib resistance [125]. Notably, 
circRNAs can regulate the assembly of membraneless 
organelles to overcome drug resistance [40, 189]. For 
example, circRNA-CREIT facilitates the interaction 
between PKR and the E3 ligase HACE1 to promote 
proteasomal degradation of PKR, which attenuates 
the assembly of stress granules (SGs) to activate the 
RACK1/MTK1 apoptosis signaling pathway and over-
come doxorubicin resistance in TNBC  [40] (Fig. 6d).

Drug resistance is an urgent problem to be solved 
in current tumor therapy treatments. Recent studies 
have shown that circRNAs can regulate drug tolerance 
pathways by interacting with miRNAs, proteins and 
translated proteins in tumor cells [33, 130, 189]. 
Targeting drug resistance-related circRNAs may 
improve the efficiency of chemotherapeutics in 
cancers.

Challenges of circRNAs as therapeutic targets
Although recent studies have suggested that circRNAs 
are promising therapeutic targets in many diseases, 
there are still some challenges [67, 99, 130]. Currently, 
two targeted therapies are commonly used: gene edit-
ing systems and RNAi [123, 141–143, 146]. The gene 
editing method uses the CRISPR‒Cas9 system to spe-
cifically delete the Alu sequence, which is important for 
circRNA formation [4, 10, 15, 143]. Such an operation 
does not affect the mRNA content of the corresponding 
linear product of the gene but only affects the formation 
of circRNA, thus regulating the life activities of the cell. 
However, this method often leads to the occurrence of 
unpredictable selective shearing events, and DNA edit-
ing is an irreversible operation with potential ethical 
problems. On the contrary, RNAi technology is rela-
tively safe to change cellular RNA levels for it will not 
cause gene changes [67, 125, 141, 195–197]. It induces 
circRNA cleavage by delivering small interfering RNA 

Table 2 (continued)

Cancer Name Up/down Characteristic Refs.

TC Hsa_circ_0137287 Down related to tumor size, lymph node metastasis and TNM stage  [282]

CC Circ_0000745 Up Knockdown Circ_0000745 inhibited proliferation, migration, invasion and glycolysis 
of cervical cancer cells

 [283]

AML: Acute Myelocytic Leukemia; ALL: Acute Lymphocytic Leukemia; CLL: Chronic Lymphocytic Leukemia; CML: Chronic Myeloid Leukemia; MM: Multiple Myeloma; 
CRC: Colorectal Carcinoma; HCC: Hepatocellular Carcinoma; GC: Gastric Carcinoma; BC: Bladder Cancer; PC: Pancreatic Cancer; OSCC: Oral Squamous Cell Carcinoma; 
ESCC: Esophageal Squamous Cell Carcinoma; EC: Esophagus Cancer; RC: Renal Carcinoma; GM: Glioma Malignancy; OC: Ovarian Cancer; TC: Thyroid Cancer; CC: 
Cervical Cancer; LC: Lung Cancer
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or short hairpin RNA to cells and reduces the content 
of circRNA. In addition, the CRISPR‒Cas13 system is 
increasingly being utilized to effectively target circRNA 
without affecting mRNA and has been shown to have 
an overall advantage in the efficiency and specificity 
of circRNA knockdown [124, 126, 141]. However, the 
efficiency of introducing gRNA and Cas13 enzymes 
into target cells is not high, and there is a certain off-
target effect. For CRISPR‒Cas13 technology to be truly 
applied to clinical practice, these problems still need to 
be further solved.

Therapeutic potential based on circular RNA 
translation
Recent studies have found that some circRNAs can 
also be directly translated into small peptides and play 
a role in cells [9, 65, 198]. Interestingly, a number of 
circRNAs can encode carcinogenic or cancer-inhibit-
ing protein products  [199–201] (Fig. 7). For example, 
circAKT3 has a predicted ORF and encodes a small 
174-amino acid peptide, AKT3-174aa, which com-
petitively binds p-PDK1 to inhibit downstream targets 

of p-PDK1, suppressing glioblastoma tumorigenic-
ity  [199] (Fig.  7a). MAPK1-109aa, encoded by circ-
MAPK1, can inhibit the proliferation and migration 
of gastric cancer cells [200] (Fig.  7b). circPLCE1-411 
promotes the ubiquitin-dependent degradation of the 
critical NF-κB regulator RPS3 by directly binding the 
HSP90α/RPS3 complex to inhibit the NF-κB signaling 
pathway in colorectal carcinoma (CRC)  [201] (Fig. 7c). 
In vivo experiments showed that circular LINC-PINT 
and vSP27 could inhibit the growth of cancer and had 
no adverse effects on mice [202, 203] (Fig. 7d).

Given that circRNAs have the perfect characteris-
tics of stable conformation, high stability, and special 
immunogenicity, RNA circle-based technologies were 
developed [9, 18, 67]. Recently, circRNAs harboring 
the translational capability of SARS-CoV-2 receptors 
were used to generate mRNA vaccines, such as the 
circRNA-RBD-Delta vaccine, which was used to pro-
tect against the COVID-19 pandemic [44] (Fig.  7e). 
However, few studies have investigated circRNAs 
with mRNA-based therapeutics in cancer treatment. 
It is a promising strategy to synthesize translational 
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circRNAs with antineoplastic genes in cancer ther-
apy. Similar to small antisense oligonucleotides, effi-
cient introduction of circRNA into target cells is key 
to clinical implementation. To improve the delivery 
efficiency of circRNA delivery boxes, vectors can be 

replaced with lentiviruses or adeno-associated viruses 
[28, 54, 190, 196]. circRNA expression boxes in target 
cells may produce a large number of linear products 
in addition to target circRNA, which may adversely 
affect cells. We may directly introduce circRNA, 
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which has been synthesized in  vitro, into the target 
cells and deliver it with nonviral nanoparticles [45, 
130, 192, 204]. However, in  vitro circularized RNAs 
generally induce extra coding genes or sequences and 
often activate remarkable immune responses and other 
unknown side effects. Therefore, future studies may 
develop specific and effective approaches to improve 
circular RNA-based therapeutics.

Conclusions and perspectives
With advances in bioinformatics and biotechnologies, 
circRNA research has become an increasingly popular 
and important field [2, 5, 9, 10, 50, 99, 130]. There are 
many new insights into aspects of circRNA studies, 
including biogenesis, epigenetic regulation and 
degradation [4, 5, 9, 10, 67]. Increasing evidence has 
revealed that circRNAs have dysregulated expression 
patterns and diverse regulatory mechanisms underlying 
cellular processes and are always related to the 
pathogenesis of various diseases, including cancer [20, 
130]. However, the study of the regulation, functions 
and biomedical application of these molecules is still at 
an early stage, and the complexity of circRNA already 
appears. For example, diverse biogenesis mechanisms of 
circRNAs are still emerging. Most annotated circRNAs 
are produced by back-splicing of pre-mRNA or intron 
self-splicing of small RNAs [5, 13, 148, 149]. With 
advances in deep sequencing, especially the development 
of long-read sequencing, a majority of novel circRNAs 
are generated by unknown splicing and differential 
locations on chromatin, such as from incomplete introns 
or exons with splicing complexity [100, 102, 127]. Some 
circRNAs were derived from intergenic sequences [50, 
205]. The factors regulating these unknown production 
mechanisms of circRNA should be further delineated. 
In addition, although many significant advances in 
identification tools of circRNAs have appeared, it is 
still difficult to precisely define their length, location, 
and expression, which are always different from those 
in experimental validations. This is an important and 
challenging task in this field, which requires scientists 
to work together. Advanced parallel technologies will 
be helpful for circRNA discovery. Some open friendly 
comprehensive pipelines, such as Fcirc, may offer 
platforms for users to optimize the discovery tools of 
circRNAs [64, 89, 92].

The sequence overlaps of circRNAs with their cognate 
linear RNA sequences usually restrict the determina-
tion of circRNA functions [5, 11]. Although recent pro-
gress in biotechnologies for knockdown and knockout 
has been made, uncertain efficiency and off-targeting in 
si/shRNA or CRISPR/Cas series systems always occur. 
A recent design based on CRISPR‒Cas13 systems can 

improve the specificity of targeting BSJ sites [124, 129, 
140, 141]. However, the efficiency of expression of Cas13 
and sgRNA together is low in cells, especially in cells in 
suspension, which may restrict their widespread applica-
tion. Importing some extra sequences and immunogenic-
ity are two difficulties in circRNA overexpression in cells, 
which affect the application of circRNAs in biomedicine 
[18, 149]. Novel strategies for circRNA overexpression 
are urgently needed. In  vitro synthesized circRNAs via 
T4 RNA ligase without extraneous fragments that pre-
sent minimized immunogenicity may be developed to be 
a useful method to meet the sufficient quantity of circR-
NAs in biomedical applications [128].

Considering the structural stability advantages, cancer-
specific expression, and drug resistance exhibited by 
circRNAs, they hold significant promise as noninvasive 
biomarkers for cancer and as targets in cancer treatment 
[20, 67, 99, 130]. Nonetheless, in clinical practice, 
the challenge lies in determining the extraction and 
processing methods for test substances, hindering 
the quest to establish circRNA as the quickest and 
most precise biopsy marker for clinical assessments. 
Additionally, achieving precise in  vivo delivery of 
si/shRNA-based knockdown or tumor suppressor 
circRNAs in anticancer therapy should be continually 
optimized. We hope that these issues can be addressed in 
future research.

The discovery of circRNA translation not only brings 
exciting new perspectives for translation machines but 
also brings novel design concepts for the treatment of 
major diseases based on circRNA translation [32, 62, 
206]. The considerable intra- and extracellular stabil-
ity of circRNA seems to make it a more ideal tool than 
other ncRNAs in many aspects of biomedical applica-
tions [62, 67]. A novel SARS-CoV-2 vaccine based on 
circRNA-RBD translation was able to produce a higher 
and longer-lasting antigen and induce a higher propor-
tion of neutralizing antibodies than an mRNA vaccine 
[44]. However, circRNA-based protein translation strat-
egies are still in the exploratory stage. Many problems 
remain unresolved. The most important problem is that 
the translation efficiency of circRNA based on IRES is 
low. Therefore, the common translational elements of cir-
cRNA need to be further optimized. For example, a team 
found that five elements upstream of the IRES topology, 
the 5′ PABP spacer, the HBA1 3′ UTR and the HRV-B3 
IRES with proximal loop Apt-eIF4G insertion, can con-
siderably improve the translational efficiency of circRNA 
in  vivo [30]. In addition, the search for candidate pro-
teins suitable for circRNA translation strategies should 
also be continued. A precision medicine approach based 
on personalized circRNA construction-candidate target-
host may be possible in the future. The emergence of 
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circRNA-based protein translation strategies has brought 
new directions to the field of biomedicine.
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